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Fractional quantum hall effect on the 2-sphere: 
a state-counting analysis 

Kare Olaussen and Roger Solliet 
Gruppe for teoretisk fysikk, Universitetet i Trondheim, Norges Tekniske Hprgskole, 
N-7034 Trondheim-NTH, Norway 

Received 26 June 1989 

Abstract. We consider a system of electrons confined to the surface of a (large) 2-sphere 
around a (strong) magnetic monopole, and interacting through a general rotational invariant 
potential. The Hilbert space for this system can be decomposed into subspaces with definite 
quantum numbers J:, J ( J + l ) ,  and N for respectively the rotation ( J 2 , J ' )  and particle 
number N operators. We study the systematics of the dimensions of these subspaces, 
which reveals many interesting patterns at low N. However, as N increases an overall 
smooth behaviour is approached, and we calculate this asymptotic behaviour as N -* a. 
As a by-product of our analysis we find the exact density of states for the case when the 
electrons interact via a pair interaction V( ?,, ?,) = -o[l -cos O , , ] ,  where a,, is the spherical 
angle between the pair. 

1. Introduction 

A charged particle in a homogeneous magnetic field is probably one of the simplest 
systems exhibiting an 'anomalous' realisation of a symmetry. This system is invariant 
under the group E(2) of Euclidean motions in the plane orthogonal to the magnetic 
field, and we may use the Noether procedure to construct the associated conserved 
quantities. With the Lagrangian L = ;mi2 - exA, where A, = - i y B  + axA, A,, = 
f x B  + a,A (i.e. with the magnetic field pointing in the z direction, B = B&) these are 

J, = xp, - yp,  + exa, A - eya,A 

P, = p , + f e y B + e a , A  

P, = py  - f e x B  + ea,"A 

coming respectively from invariance under rotations around the z axis and translations 
in the x and y directions. In all these expressions A = A ( x ,  y )  is an arbitrary gauge 
function. In the canonical formalism the conserved quantities above will act as 
generators of the symmetry transformations from which they were derived. However, 
in this case, their Poisson brackets do not quite fulfil the Lie algebra of the two- 
dimensional Euclidean group. Instead 

{PX, P y )  = eB {Jz, PxI = F" {Jz, P,) = -px. (2) 
For a system of N particles of equal charge e the first 'anomalous' bracket is replaced 
by eBN.  (The reason for the discrepancy is that the generators act on the whole 4~ 

phase space, not only on the 2~ Euclidean plane.) 

t Present address: Department of Physics, Temple University, Philadelphia, PA 19122, USA. 
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Thus, after quantisation, it is not possible to choose simultaneous eigenstates for 
P, and Py, since these operators do not commute with each other. Therefore, when 
analysing a finite-size version of the model, e.g. for the quantum Hall effect ( Q H E ) ,  it 
is of no particular advantage to maximise the translational symmetries by imposing 
periodic boundary conditions as usual. Instead, it seems computationally simpler to 
map the xy plane onto the surface of a 2-sphere [ l ] ,  thus modelling the system by a 
huge magnetic monopole [2]. In this process the Euclidean symmetry of the xy plane 
is replaced by the rotational symmetry of the sphere, with the latter being realised in 
the standard way. In the following we shall not consider motion in the z direction, 
assuming it to be frozen, as is usual in discussions of the QHE. 

Taking the magnetic monopole to carry q units of magnetic charge, where q is 
integer or half integer (to avoid unnecessary cluttering of our formulae we assume q 
to be positive), the radius R of the 2-sphere must be chosen to satisfy 

47rR'B = 4rrqfiIe = 2 q a 0  (3)  

with a0 the elementary flux quantum. That is, R = ql'21B, where lB = ( f i / e B ) ' / '  is the 
magnetic length. 

Quantisation of the kinetic energy leads to the energy levels [3] 

E L =  f i o c [ L + t + L ( L + l ) / 2 q ]  L=O, 1 , .  . . , (4) 

where w ,  = eB/ m is the cyclotron frequency. The states in the Lth (Landau) level 
carry angular momentum J = q + L, and thus have a degeneracy DL = 1 + 2q + 2L. 

The one-particle eigenfunctions can be chosen as the monopole harmonics [ 4 ] .  
Some of their useful properties are given by Wu and Yang [5 ] t .  In the lowest Landau 
level these monopole harmonics are related to the singular gauge eigenfunctions, 
h,(B, cp) = cosq+"'(~B) sinq-"(f8)ei"', used by Haldane and Rezayi [6], by 

( 5 )  

These expressions show that, when q + m ,  a (negative charge) particle of angular 
momentum J, = fim will be localised to the region where cos 8 = m l q .  

Let us further verify that the commutation relations for the rotation group will 
reduce to those found for (the 'anomalously' realised) E(2) when q + m .  Consider a 
particle in the vicinity of the North Pole. By a simple geometric consideration we see 
that P, = R-IJ, = q-'/21;lJy and P, = -R- 'J ,  = -q-"21i1Jx are the appropriate gen- 
erators of translations in this region. Their Poisson bracket thus becomes 

I i 1 
{ P, , Py } = - ; [ P, , P, ] = - [ J, , Jx 3 = - J, = eB 

fiqG S G  

in agreement with the direct computation (2).  In the last identity above we have used 
that a particle close to the North Pole has J, = fiq. 

The system we are considering may be regarded as a model for electrons confined 
to an essentially two-dimensional GaAs-Ga,Al, -, As heterostructure (or Si-MosFET 
inversion layer) in a strong magnetic field. Low-temperature experiments have revealed 

t Since we have assumed the magnetic field to be positive, while the electron has a negative charge -e, our 
one-particle eigenfunctions are V,;qq', J = q, q + I ,  . . . . 
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the spectacular phenomenon of the fractional quantum Hall effect (FQHE) in clean 
samples of such systems [7]. These experiments have been interpreted as a distinct 
affinity for the systems to stay at certain rational filling factors. Using arguments of 
symmetry and particle statistics alone, Laughlin [8] found Jastrow-type wavefunctions 
which appear to be very good approximations to the ground state at filling factors 
v = 1/ m, when m = 2k + 1 is a small odd integer. Precisely such factors are among the 
experimentally most distinguished ones. And, interestingly enough, it is not possible 
to make a simple generalisation of the Laughlin states to arbitrary filling factors. 

Although there is little doubt that the Laughlin-Jastrow wavefunctions represent 
the FQHE ground states very well in the appropriate cases, the fact that one cannot 
find simple representations of the ground states except at particular filling factors is 
somewhat unsatisfactory as an explanation for the FQHE. Why should Nature care 
about whether it can be described in terms of a simple wavefunction or not? 

However, since symmetry and particle statistics were the essential ingredients in 
the derivation of the Laughlin states (apart from the Jastrow ansatz), it is interesting 
to investigate the consequences of these restrictions alone. This is the purpose of the 
present paper, where we analyse how the Hilbert space for N identical fermions, all 
being in the lowest Landau level of the field of a magnetic monopole with q units of 
magnetic charge, split into irreducible representations (i.e. subspaces of definite angular 
momentum J 2  = J(J + 1)) of the rotation group. The rotation symmetry appears to be 
the only one which may be present irrespective of the type of interaction. Our hope 
was that this analysis would reveal some interesting patterns in the number of times 
each J occur, as functions of the filling factor v. Our results are that, after a rather 
interesting initial structure at low particle numbers (which correlates well with the 
stability pattern of the ground state energies), an essentially smooth behaviour is 
obtained when q + CO with J and v fixed. With the apriori knowledge that the asymptotic 
behaviour is smooth, this behaviour is straightforward to compute analytically (together 
with the approach to asymptotica). We do that, and obtain perfect agreement with 
the results of the exact numerical calculation. 

The rest of this paper is organised as follows. In section2 we use the character 
formula to derive a recursion relation for the required dimensions D ( N ,  J ;  q ) ,  and 
perform an exact numerical computation of the Ds up to fairly large values of N and 
q. In section 3 we derive analytic expressions for the asymptotic behaviour of the Ds 
as q + CO with v N/(2q  + 1) and U = 2J /q(  q + 1) fixed, and compare with the exact 
results. We close our discussion in section 4 with a few comments. 

2. Exact state counting from the character formula 

Since the Hamiltonian of the system commutes with the particle number N and rotation 
J operators, it can be made block diagonal, with the blocks being labelled by the 
eigenvalues N, J,, J(J+ 1) of the operators N, Jz ,  J 2 .  The linear dimension of each 
block, D( N, J ;  q ) ,  is equal to the number of times the spin-J representation of the 
rotation group (actually SU(2), if q is half integer) occurs in the subspace of fixed N. 
Finding D( N,  J ;  q )  is thus a problem of coupling spin-q altogether N times, and 
counting how many times the result decomposes into each irreducible representation. 
However, since we must take into account the Pauli principle, only representations 
which are totally antisymmetric in the N factors are allowed. This is automatically 
taken care of if we employ second quantisation. 
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In second quantised language, the dimension D ( N ,  J ;  q )  can be found from the 
character formula 

x (e ,~$ ;  q )  =Tr{eiBN = D ( N ,  J ;  q )  e i N B x ( " ( ~ )  (7) 
N ,  J 

where x ' ~ )  is the character for the spin-J representation of SU(2), 

and the operators N and J, are given by N = 2 ,  aka,, J, = 2 ,  maka,, when an 
appropriate representation for the fermion operators is chosen. 

In this representation the character x( 8, 4; q )  is easy to find: 

x(e ,  4; q )  = fi 11 +el(B+mb) I. (9) 
m = - q  

Using the orthogonality properties of the characters x ' ~ ) ,  an explicit expression for 
the D ( N ,  J ;  q )  is then given by the integral formula 

but this is not very practical for obtaining explicit results. It is better to utilise the 
recursion relation 

x(e ,4 ;  q ) = [ 1 + 2 e i B  C O S ( ~ ~ ) + ~ ~ ' ~ ] X ( B , ~ ;  q - l ) ,  

2 cos(q4)xy'J '(4) = ~ ( ~ + q ) ( 4 )  +sgn(J - q ) ~ ( ' ~ - q ' ) ( 4 )  

and employ the formula 

to find a recursion relation in q for D( N, J ;  q ) :  

D ( N ,  J ;  q )  = D( N,  J ;  q - 1)+ D ( N -  1, J + q ;  q - 1)+ D ( N -  1, J - q ;  q -  1) 

- D( N - 1, q - J ;  q - 1)+ D ( N  -2, J ;  q - 1). (10) 

Here D( N, J ;  q - 1) is defined to be zero if N < 0 or J < 0. The D( N, J ;  q )  are also 
zero when J > J,,, = fN(2q  + 1 - N ) .  The recursion relation of (10) thus involves only 
a finite number of non-zero quantities for each q. The starting values may be read out 
of the character expression for q = 0 (or q = f ) :  

D(0,O; 0 )  = D( 1,o; 0) = 1 

D(O,O;f)=D(l , f ; ; )=D(2,0;f)=l  

if q is integer 
(11) 

if q is half integer. 

It is now straightforward to make an exact numerical computation of all the required 
dimensions up to fairly high values of q. As a consistency check on the computation, 
the relation 

(2q' '> C ( 2 J +  l ) D ( N ,  J ;  q )  = 
J 

may be tested. From the point of view of numerical diagonalisation of the Hamiltonian 
it is also of interest to compare the dimensions D ( N ,  J ;  q )  with the dimensions 
C ( N ,  J ;  q )  obtained if only the quantum numbers N and J,  are fixed. The latter are 
the dimensions of the so-called configuration interaction matrices (which are the 
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Hamiltonian matrices that can be constructed in a fairly straightforward manner in 
these systems). We have the relation 

At low particle numbers D( N, J ;  q )  reveals some rather interesting behaviour as 
a function of q. 

(i) For N = 2 we find D = 1 when 2q + J  is an even integer, and D = 0 otherwise. 
This is a reflection of the well known fact that two equal spins q can couple antisym- 
metrically only to an odd angular momentum when q is integer, and only to an even 
angular momentum when q is half integer. Still, it is worth noticing that this is in 
perfect agreement with the condition for having a Laughlin wavefunction on the sphere 
[ I 1  

q = f m ( N  - 1 )  (14)  

where m = 2k + 1 is an odd integer. For N = 2 this predicts a Laughlin state for every 
half integer, i.e. all the J = 0 states possible. 

(ii) For N = 3 this pattern is maintained. A (single) J = 0 state exists if and only 
if q is an odd integer, q = 2 k +  1 ,  in agreement with (14) .  That is, all the possible 
N = 3 ,  J = O  states are Laughlin states. For other values of J the pattern is more 
complicated, revealing a period-6 systematic variation, and being dependent on whether 
J s q or not. We summarise the complete pattern in table 1 for integer q. 

Table 1. The dimensions D( N = 3 ,  J ;  q )  of the subspaces for all integer values of J and 
q. Here k = 0, 1 , .  . . . 

6 k  2 k + l  & q + i - k  2 k  $ 9 - k  
6 k + l  2 k  4 q - t - k  2 k +  1 f q - k  
6 k + 2  2 k + l  t q - f -  k 2 k  $ 4 - k - 1  
6 k + 3  2 k + l  f q - 4 - k  2 k + 2  i s - k  
6 k + 4  2 k + 2  fq- l -  k 2 k +  1 4 9 - k - 1  
6 k + 5  2 k + l  4 q - t - k  2 k + 2  $ 9 - k - 1  

(iii) The number of N = 4, J = 0 states must be equal to D( N = 3 ,  J = q ;  q ) ,  and 

( 1 5 )  

can thus be read out of table 1 for integer q. The complete pattern is that 

D ( N = 4 , J = O ; q ) = k ,  k - 1 ,  k, k, k, k ,... 
when 

29=6k-3,6k-2,6k-l,6k,6k+1,6k+2 , . . .  
Here k = 1,2,  . . . . We note that the number of states is increased by one at q = 3 / 2 ,  
9 / 2 ,  . . . , ( 6 k  + 3 ) / 2 ,  . . . . This again agrees with the sequence of (14 ) ,  and it is natural 
to identify the new state which appears with a Laughlin state. Since this state tem- 
porarily disappears when q is further increased by f ,  one might expect these states to 
have an additional stability with respect to changes in the filling factor. 
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(iv) Up to N = 4 we have found a one-to-one correspondence between the sequence 
of Laughlin states and the number of J = 0 states. Unfortunately this correspondence 
cannot easily be seen at N = 5 ,  although there still is some regular periodic structure 
in D(N = 5 , J = O ;  9). This is simplest to describe by defining AD(q)= 
D(5,O; q )  - D(5,O; q -2), which varies as 

AD(q)=k,k- l ,k ,k ,k ,k  ,... (16) 

when 

q=12k-10 ,12k-8 ,12k-6 ,12k-4 ,12k-2 ,12k  ,.... 

Here k = 1 ,2 , .  . . . This structure only involves the q s  at even integers. In addition, 
there is the relation D(5,O; q + 9 )  = D(5 ,0 ,q ) .  One may ponder if this originates in 
some kind of symmetry, operating between different q-sectors. 

(v) Apart from a systematic difference between integer and half integer q, at N = 6 
it seems that D ( N ,  0; q )  begin to approach a rather smooth behaviour. The second- 
order difference, D(6,O; q + 1 )  -2D(6,0; q )  + D(6,O; q - l ) ,  turns out to be rather 
small, but it does not reveal any simple pattern. However, analogous to the N = 5  
case there is a relation between the dimensions at integer and half integer q :  0 ( 6 , 0 ,  q + 
15/2) = D(6,0,q) .  

As N increases it seems that D( N, 0; q )  approaches a completely smooth behaviour. 
The systematic difference between odd and even q (when N is odd), and between 
integer and half integer q (when N is even) also disappears as N increases. This is 
demonstrated in figure 1, where we show how In D ( N ,  J ;  q ) / q  becomes a smooth 
function of the scaled variables v =  N / ( 2 q + l )  and a = 2 J / q ( q + l )  as we approach 

Figure 1. The dimension of the subspaces as a function of l / 9  and Y. Due to scaling we 
actually plot the logarithm of D divided by 9. The small oscillations for intermediate 
values of q is an artifact caused by the graphics routine (cf the smooth behaviour in figures 
2 and 3). 
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the q = 00 limit. (Only the case of U = 0 is shown.) In tables 2 and 3 we show results 
for C (  N, 0; q )  and D( N, 0; q )  for some low values of N, q. The sequences chosen in 
table 2 correspond to the spherical analogues of the Laughlin f and states, i.e. 
4 = i m ( N -  l ) ,  with m = 3 and 5 .  The sequences chosen in table 3 correspond to the 
first two daughters of the f states, i.e. q = im( N - 1) * f( 1 + N / p ) ,  with m = 3 and p = 2 .  
These two sequences approach filling factors v = $ and $ as N + 0;). It is worth noticing 
the large difference in magnitude of the coefficients C and D. This tells us that the 
matrices one has to diagonalise are much smaller if one is able to exploit the full 
rotational symmetry. As 4 + 0;) the ratio C/ D behaves like 4q3 v( 1 - v ) / 3  when J = 0, 
and like q / A (  v, a) when a - J / q 2  # 0 (cf the discussion in section 3) .  Thus, the savings 
are greatest in the most interesting case of rotational invariant states. It is, however, 
non-trivial to explicitly construct the Hamiltonian matrices in the subspaces where J 2  
is diagonal [9]. 

Table 2. Dimensions D( N, J = 0; 9 )  (C( N, A4 = 0; 9)) of the subspaces diagonalking N,  
Jz and J,  (N and J , )  for some small values of q and N corresponding to the m = 3 and 
5 Laughlin states. These exist when 9 = f m ( N  - 1) ( m  odd), and approach a filling factor 
v = m - '  as N+co. 

4 4.5 2 
5 6.0 2 
6 7.5 6 
7 9.0 10 
8 10.5 31 
9 12.0 84 

10 13.5 319 
11 15.0 1160 
12 16.5 4 498 
13 18.0 21 660 

18 7.5 
73 10.0 

338 12.5 
1656 15.0 
8 512 17.5 

45 207 20.0 
246448 22.5 

1371 535 25.0 
7764392 27.5 

44 585 180 30.0 

3 
4 

20 
62 

365 
2 082 

14 664 
106 678 
833 361 

6731 131 

86 
649 

5 444 
48 417 

450 096 
4 323 349 

42611 589 
428 774 562 

Table 3. Dimensions D(  N ,  J = 0; 9 )  (C( N ,  M = 0; 9 ) )  of the subspaces diagonalising N, 
J 2  and Jz  ( N  and JL) for some small values of q and N corresponding to the m = 3, p = 1 2  
hierarchy states. These exist when 9 = f m (  N - 1) if( 1 + N / p )  ( m  odd, p even and dividing 
N ) ,  and approach the filling factors Y = p / (  mp * 1) as N + CO. 

m =3, p = -2 
~~ 

m = 3 , p  = 2 

3 

4 
6 
8 

10 
12 
14 
16 
18 

3.0 
5.5 
8.0 

10.5 
13.0 
15.5 
18.0 
20.5 

1 5 
3 58 
8 910 

52 16 660 
320 332 578 

5 034 7 040 196 
70 180 15 548 450 

1099 354 

6.0 2 43 
9.5 10 1242 

13.0 80 46 029 
1 943 488 16.5 1429 

35 123 89 008 530 20.0 
23.5 1060 615 
27.0 
30.5 
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3. Asymptotic behaviour of the number of states 

As demonstrated by figure 1, exact calculation of the D( N, J ;  q )  from the recursion 
relation (10) reveals a smooth behaviour when q --f CO. We may thus attempt to calculate 
this asymptotic behaviour directly. To this end we consider the quantity 

z ( p ,  A )  = Tr{e-‘fi”+*J:/q’ 1 (17) 

which on the one hand can be expressed in terms of the quantities C( N, M ;  q ) ,  and 
on the other hand can be evaluated directly as in (9): 

Evaluating the last sum with the help of the Euler-Maclaurin summation formula we 
find as q +CO: 

Z b ,  A )  =exp{qA(p, A)+B(P., A)+O(q-’)}  (19) 
where 

A(p,  A )  = dx ln[l+e-(Ir+AX)] 

~ ( p ,  A )  =;In[( 1 + e-‘p-A’)( 1 + 11. 
We now make the ansatz 

C ( N , M ;  q ) = e x p { q a ( v , a ) + b ( v , a ) l n q + c ( v , a ) + O ( q ~ ~ ’ ) }  (21) 
when q + cc. Here we have introduced scaled variables 

2 M  
(+=- 

N 
v=- (filling factor) 

2q+ 1 q ( 4  + 1) 
and a(  v, a) ,  b( v, U ) ,  and c (  U, U )  are functions to be determined. We insert this ansatz 
into (18), and approximate the sum over N, M by an integral. Evaluating this integral 
as q + m  gives 

Z ( p ,  A ) =  ~ ( 2 q + l ) ( q + l )  detf1”(-a2a) exp{q[a(v, a)-2pv-;Au] 

where ( $ a )  is the 2 x 2 matrix of second-order partial derivatives (cf (28)). Here U, U 

are to be viewed as functions of p, A, determined from the equations 

+ b ( v , a )  In q + [ c ( v ,  u ) - p v - ~ A ( ~ ] }  (23 1 

By comparing (19) and (23) we realise that A(p,  A ) and a(  U, U )  are related by Legendre 
transforms: 

a(  U, U )  = A(p,  A )  + 2 p v  + ; A a  

with 

aA 
(+ = - 2  - 1 aA 

2 JCL dA ’ 
U = - - -  
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Further, with the above relations between ( U ,  U )  and (p ,  A ) ,  

b(v,A)=-2 
(27) 

c(v, A ) = & ,  A ) + p v + ~ A u - $  ln[det(a2A)]- ln2~.  

Here we have made use of the fact that the matrices (a’a) and (a2A) are essentially 
inverse of each other when a and A are related by Legendre transforms: 

-- - 1 a2a a2a 
2 a v 2  a v a u  2 a p 2  a p a ~  

a u a v  a a 2  

- _  - 

2- 

We have now collected all the formulae necessary to compute the asymptotic 
behaviour of C( N, M ;  q )  as q + W. This is in turn related to the asymptotic behaviour 
of D ( N ,  J ;  9 )  by 

D( N,  J ;  4) = C ( N, J ;  4) - C ( N, J + 1 ; 4) = - 

x exp{qa( v, a )  - 2 In q + c(  U, a )  +. . . }. (29) 

We have to expand to second order in the derivative here because the first derivative 
vanishes when J = 0, since C (  N,  J ;  q )  is an even function of J. For this reason the 
ratio D( N,  J ;  q ) /  C( N, J ;  q )  scales like q-3 when J -- 0, and like q-’ otherwise (cf the 
discussion below (13)). 

Since the integral in (20 )  defining A(p ,  A )  cannot be calculated in closed form, it 
is not possible in general to give completely explicit expressions for the asymptotic 
behaviour of D. However, some analytic simplification is possible because we can 
evaluate aA/ap, and eliminate p in favour of v from ( 2 6 ) :  e” = sinh( 1 - v)/sinh( v). 
The remaining analysis must then be performed numerically. This we have done in 
various cases, and verified that the expressions found reproduce the large-q behaviour 
calculated directly from the recursion relation ( IO) .  Further, in the most interesting 
case of rotational symmetry, J = U = 0, explicit expressions are available, since in this 
case also A = 0. We find A(p, 0) = 2 In( 1 +e-”) ,  v = (1 + ep)-’, i.e. e” = (1 - v)/ U ,  and 
thus 

a ( v ,  0) = -2[v In v + ( l -  v )  In(1- U)]. (30) 
To evaluate c( v, 0) we first calculate AFF(p, 0) = 2e”/(e” + 
0, and AAA(/A, 0) = 2 v ( l -  v ) / 3 ,  and thus find 

= 2 4 1  - v), AwA(p,  0) = 

c ( v , 0 ) = - [ ( 1 + v ) l n  v + ( 2 - v ) l n ( l - v ) + i n ( 4 ~ / ~ ) ] .  (31) 
Collecting terms, the leading-order behaviour for C( N, 0; q )  is found to be 

C(N,O; q ) - ( ~ / 4 . i 7 q ~ ) x e x p { - 2 q [ v I n  v + ( l - v )  In(1- v)] 

-[(  1 + v )  In v + ( 2 -  v )  In(1- v)]}, (32) 
This formula is not quite sufficient to calculate the leading-order behaviour for 
D ( N ,  0; q) .  However, from the general expression (29) the connection is found to be 
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80 
60 

40 

20 

V 

Figure 2. The approach to asymptotia as q increases. The exact values are plotted for 
q = 20,40, 60 and 80. In addition we show the asymptotic behaviour for q = 80 as the full 
curve close the numerical values, calculated from (33),  and also the limit q = W. 

1 .41  
i 

I I , 
0 0.02 0.04 0.06 0.08 0.10 

114 
Figure 3. The approach to asymptotia as q increases, for J = 0 and v = 4. The exact values 
are compared with the asymptotic behaviour ( 3 3 ) .  
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D( N, 0; q )  = -2q-3(d2a/do2)( v, O)C( N, 0; 9). From (28) we find that (d'a/da')( v, 0) = 
-3/8v(  1 - v). Finally 

D(N,O; q)=[3~ /16 .rrv2(1 -u) 'q5]exp( - (2q+1) [v1n  v+( l -v) ln( l -v) ]} .  (33) 

In figures 2 and 3 we show how this analytic formula compares with the numerical 
results. As can be seen, it is very good except at low values of q. It is also clear that 
the corrections to the q = 00 result are very important even for rather large values of 
q. This is somewhat surprising in view of the stable results obtained when computing 
the ground state energies at low particle numbers, and should perhaps be taken as a 
warning against putting too much trust in results from numerical calculations on small 
systems. However, it is possible that the corrections are unusually large in this case, 
due to the 5 ln(q)/q term which is present here. 

4. Comments and conclusion 

We close our discussion with a few remarks. 
(A) In this paper we have used the (in our view) natural definition of filling factor, 

U = N/(2q  + 1) in the lowest Landau level, L = 0. This is slightly different from the 
one which has been used by Haldane and Rezayi [6] and others [lo]. Denoting the 
latter as vH, the relations are 

1 - l / N  
1 - ( 1 - + ) / N  l - v / N  

v H  =- U. 
Uti  

U =  (34) 

We have noticed that using our definition of filling factor reduces the finite size 
dependence of the energy per particle E N  ( v)/ N [ 111. However, the spherical analogues 
of the Laughlin states exist at fixed values of vH when N varies, not at fixed values 
of U. 

( B )  When projected onto the lowest Landau level, the operator J2 is related to the 
Hamiltonian H for a system of particles interacting via a pair potential 

where a,, is the spherical angle between the two particles. Adding a compensating 
interaction with a homogeneous background the relation becomes 

Since the spectra of these operators are known, and the degeneracy of each eigenvalue 
has been computed, we have as a byproduct of our analysis found the complete density 
of states against energy for this particular model. This is plotted in figure 4 for a 
selected set of filling factors U, in the limiting case of q =a. 

(C) The model above is also a natural spherical generalisation of a model in the 
Euclidean plane with harmonic interactions between the fermions [ 121. Since the 
interaction between distant particles is likely to be screened by the compensating 
background, we may approximate 
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Figure 4. The density of states as a function of energy for the model defined by the 
interaction (35). The model may be viewed as the spherical version of a model 
harmonic interactions defined on the Euclidean plane. 
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Figure 4. The density of states as a function of energy for the model defined by the 
interaction (35). The model may be viewed as the spherical version of a model 
harmonic interactions defined on the Euclidean plane. 

pair 
with 

as q + 00. Here r,, is the planar distance between the particles. We should thus make 
the scaling U = qEo, with Eo constant as q + CO. If the ground state is to be rotational 
invariant we must choose Eo to be positive. It is clear that this model by itself does 
not show any sign of the FQHE, but there is left a huge degeneracy (with a finite zero 
point entropy per particle) of the ground state. 

In conclusion, we have analysed the number of states in the 2~ many-electron 
problem in a perpendicular magnetic field, with all electrons restricted to the lowest 
Landau level. The problem was mapped onto a sphere, and  calculations of the number 
of states were made both exact numerically and  asymptotically in the thermodynamic 
limit. The results show some interesting pattern at  low values of N, distinguishing the 
same filling factors as those selected by the (finite N )  Laughlin states on a spherical 
surface. However, no similar correlation is seen for the hierarchial states, and  as N 
increases a smooth dependency on the filling factors is obtained, with no signs of any 
particular extraordinary values. 

The formalism we use stems from Wu and  Yang’s solutions of an  electron in the 
field of a magnetic monopole. This leads naturally to another definition of the filling 
factor of the lowest Landau level, slightly different from the one  which appears to 
have been used by others. 

We have also shown that the matrix dimension of the Hamiltonian can be largely 
reduced if it is possible to exploit the full rotational symmetry of the problem. The 
savings are particularly large for the states of total angular momentum zero. We have 
performed a case study of how to perform this symmetry reduction [9]. 

In what way is this work relevant for understanding the fractional quantum Hall 
effect? We think the main lesson to be learned is that the results from studies on (small) 
finite systems must be treated with extreme caution. Structures which can be seen at 
low particle numbers may be washed away completely in the thermodynamic limit. 
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Thus, even though the finite size studies by Haldane and Rezayi [ 6 ]  and Fano et al 
[lo] give very strong support for the Laughlin theory of the FQHE, it is our belief that 
there is still more work to be done and discoveries to be made on this problem. 
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